anexo , preguntas de prueba
Requisitos de finalización
EJERCICIOS
- \(2x = 18\)
- \(-4x = 12\)
- \(x - 5 = 3\)
- \(3 - x = 7\)
- \(2x - 6 = 8\)
- \(-3x + 2 = -9\)
- \(-5x - 2 = -18\)
- \(-(x-3) + 6 = 0\)
- \(-(2x+9) = 15\)
- \(2(x+3) = 0\)
- \(4(6+x) = 40\)
- \(-3(5 - x) = -60\)
- \(-2(2x - 10) = 100\)
- \(2(6 - x) = 36\)
- \(3x + 6 = x + 50\)
- \(4x + 7 - 2x + 29 = 0\)
- \;2(x - 6) + 3(x + 7) = 0\)
- \;5(x - 4) = 3(x - 6)\)
- \(\dfrac{x}{7} = 2\)
- \(\dfrac{x}{5} = 3\)
- \(\dfrac{x}{2} + 6 = 0\)
- \(\dfrac{x}{-3} + 4 = 16\)
- \(\dfrac{x - 8}{2} = 20\)
- \(\dfrac{2x - 1}{-2} = 5\)
- \(\dfrac{x}{3} + \dfrac{x}{2} = 10\)
- \(\dfrac{x - 1}{4} - \dfrac{x + 1}{2} = 7\)
- \(\dfrac{1}{8} + \dfrac{2x + 3}{4} = -\dfrac{x}{2}\)
- \(\dfrac{2x + 3}{2} = \dfrac{3x + 1}{3}\)
//////////////////////////////////////
Ecuaciones: desarrollo
- \[ \begin{aligned} 2x&=18\\ x&=\frac{18}{2}=9 \end{aligned} \]
- \[ \begin{aligned} -4x&=12\\ x&=\frac{12}{-4}=-3 \end{aligned} \]
- \[ \begin{aligned} x-5&=3\\ x&=3+5=8 \end{aligned} \]
- \[ \begin{aligned} 3-x&=7\\ -x&=7-3=4\\ x&=-4 \end{aligned} \]
- \[ \begin{aligned} 2x-6&=8\\ 2x&=14\\ x&=7 \end{aligned} \]
- \[ \begin{aligned} -3x+2&=-9\\ -3x&=-11\\ x&=\frac{-11}{-3}=\frac{11}{3} \end{aligned} \]
- \[ \begin{aligned} -5x-2&=-18\\ -5x&=-16\\ x&=\frac{-16}{-5}=\frac{16}{5} \end{aligned} \]
- \[ \begin{aligned} -(x-3)+6&=0\\ -x+3+6&=0\\ -x+9&=0\\ x&=9 \end{aligned} \]
- \[ \begin{aligned} -(2x+9)&=15\\ -2x-9&=15\\ -2x&=24\\ x&=-12 \end{aligned} \]
- \[ \begin{aligned} 2(x+3)&=0\\ 2x+6&=0\\ 2x&=-6\\ x&=-3 \end{aligned} \]
- \[ \begin{aligned} 4(6+x)&=40\\ 24+4x&=40\\ 4x&=16\\ x&=4 \end{aligned} \]
- \[ \begin{aligned} -3(5-x)&=-60\\ -15+3x&=-60\\ 3x&=-45\\ x&=-15 \end{aligned} \]
- \[ \begin{aligned} -2(2x-10)&=100\\ -4x+20&=100\\ -4x&=80\\ x&=-20 \end{aligned} \]
- \[ \begin{aligned} 2(6-x)&=36\\ 12-2x&=36\\ -2x&=24\\ x&=-12 \end{aligned} \]
- \[ \begin{aligned} 3x+6&=x+50\\ 3x-x&=50-6\\ 2x&=44\\ x&=22 \end{aligned} \]
- \[ \begin{aligned} 4x+7-2x+29&=0\\ 2x+36&=0\\ 2x&=-36\\ x&=-18 \end{aligned} \]
- \[ \begin{aligned} 2(x-6)+3(x+7)&=0\\ 2x-12+3x+21&=0\\ 5x+9&=0\\ 5x&=-9\\ x&=-\frac{9}{5} \end{aligned} \]
- \[ \begin{aligned} 5(x-4)&=3(x-6)\\ 5x-20&=3x-18\\ 5x-3x&=-18+20\\ 2x&=2\\ x&=1 \end{aligned} \]
- \[ \begin{aligned} \frac{x}{7}&=2\\ x&=14 \end{aligned} \]
- \[ \begin{aligned} \frac{x}{5}&=3\\ x&=15 \end{aligned} \]
- \[ \begin{aligned} \frac{x}{2}+6&=0\\ \frac{x}{2}&=-6\\ x&=-12 \end{aligned} \]
- \[ \begin{aligned} \frac{x}{-3}+4&=16\\ \frac{x}{-3}&=12\\ x&=-36 \end{aligned} \]
- \[ \begin{aligned} \frac{x-8}{2}&=20\\ x-8&=40\\ x&=48 \end{aligned} \]
- \[ \begin{aligned} \frac{2x-1}{-2}&=5\\ 2x-1&=-10\\ 2x&=-9\\ x&=-\frac{9}{2} \end{aligned} \]
- \[ \begin{aligned} \frac{x}{3}+\frac{x}{2}&=10\\ \text{(mcm \(=6\)): } 2x+3x&=60\\ 5x&=60\\ x&=12 \end{aligned} \]
- \[ \begin{aligned} \frac{x-1}{4}-\frac{x+1}{2}&=7\\ \text{(den. \(4\)): } (x-1)-2(x+1)&=28\\ x-1-2x-2&=28\\ -x-3&=28\\ -x&=31\\ x&=-31 \end{aligned} \]
- \[ \begin{aligned} \frac{1}{8}+\frac{2x+3}{4}&=-\frac{x}{2}\\ \text{(den. \(8\)): } 1+2(2x+3)&=-4x\\ 1+4x+6&=-4x\\ 4x+7&=-4x\\ 8x&=-7\\ x&=-\frac{7}{8} \end{aligned} \]
- \[ \begin{aligned} \frac{2x+3}{2}&=\frac{3x+1}{3}\\ 3(2x+3)&=2(3x+1)\\ 6x+9&=6x+2\\ 9&=2\quad\Rightarrow\quad \text{contradicción} \end{aligned} \] \(\Rightarrow\) **Sin solución** (ecuación inconsistente).
Última modificación: martes, 26 de agosto de 2025, 11:30